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Abstract
In this paper, we will concentrate on the topic of integrable discrete hierarchies
in 2+1 dimensions, and their connection with discrete Painlevé hierarchies. By
considering a (2+1)-dimensional nonisospectral discrete linear problem, two
new (2+1)-dimensional nonisospectral integrable lattice hierarchies—the 2+1
nonisospectral relativistic Toda lattice hierarchy and the 2+1 nonisospectral
negative relativistic Toda lattice hierarchy—are constructed. It is shown that
the reductions of the two new 2+1 nonisospectral lattice hierarchies lead to
the (2+1)-dimensional nonisospectral Volterra lattice hierarchy and the (2+1)-
dimensional nonisospectral negative Volterra lattice hierarchy. We also obtain
two new (1+1)-dimensional nonisospectral integrable lattice hierarchies and
two new ordinary difference hierarchies which are direct reductions of the two
2+1 nonisospectral integrable lattice hierarchies. One of the two difference
hierarchies yields our previously obtained generalized discrete first Painlevé
(dPI) hierarchy and another one yields a generalized alternative discrete second
Painlevé (alt-dPII) hierarchy.

PACS numbers: 02.30.Hq, 02.30.Ik

1. Introduction

As is well known, there has been widespread interest in the study of continuous and discrete
integrable systems because of their important roles in mathematics and physics. The well-
known continuous integrable systems are the Korteweg–de Vries (KdV) equation and nonlinear
Schrödinger equation, which have important physical applications. In the realm of discrete
integrable systems described by nonlinear differential-difference or difference equations,
perhaps the best known integrable discrete systems are the Toda lattice and the Volterra
lattice. Remarkably, the Toda lattice itself has been a source of new integrable lattice, with
new integrable lattices related to the Toda lattice having been proposed, e.g., the relativistic
Toda lattice [1]. The relativistic Toda lattice was extensively studied. For example, its Lax
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pairs, the recursion operator, the Bäcklund transformation and the Hamiltonian structure have
been obtained [2–6].

On the other hand, the investigation for multidimensional integrable systems is always
an important and attractive topic. In continuous three-dimensional case, the Kadomtsev–
Petviashvili (KP) equation [7], a natural two-dimensional generalization of the KdV, is well
known. The KP arises in many field of physics, such as fluid mechanics, plasma physics,
etc, and has all the usual properties of completely integrable systems. We also remark here
that the self-dual Yang–Mills (SDYM) equations are of great importance in both physics and
mathematics [8–10]. They play a central role in the field of integrable systems. It has been
shown that three-dimensional reductions of the SDYM yield many equations including the
KP, modified KP, (2+1)-dimensional N-wave, and Davey–Stewartson equationas [11–13]. Let
us turn to multidimensional discrete integrable systems. In (2+1)-dimensional case, (2+1)-
dimensional Toda lattice and its hierarchy and (2+1)-dimensional Volterra lattice are well
known [14, 15]. Several other 2+1 lattices, for example, the so-called differential-difference
KP equation due to Date, Jinbo and Miwa [16], 2+1 lattices constructed by Blaszak and Szum
[17], were also studied.

We note that the most of known integrable systems (continuous or discrete, (1+1)-
dimensional or multidimensional) relate to isospectral problems. Nonisospectral scattering
problems, of course, since the work of Calogero [18], have continued to be the subject
of much study, both in the continuous and discrete cases [19–24]. However, to the best
of our knowledge, there is little work for multidimensional discrete nonisospectral flows.
Very recently, we have proposed several (2+1)-dimensional integrable lattice hierarchies
related to (2+1)-dimensional nonisospectral discrete linear problems [25–27]. One is a
new (2+1)-dimensional nonisospectral Volterra lattice hierarchy and the second is a new
(2+1)-dimensional nonisospectral extension of the discrete mKdV hierarchy. The third is
a new (2+1)-dimensional nonisospectral Toda lattice hierarchy. We have also found that
a generalized dPI hierarchy and a generalized dPII hierarchy can be obtained as stationary
reductions of these new (2+1)-dimensional nonisospectral hierarchies. Thus we have greatly
extended previously known results, for example that the dPI and dPII equations can be obtained
from particular lattice equations [28], to the new result that generalized versions of the dPI

and dPII hierarchies can be obtained from (2+1)-dimensional lattice hierarchies.
In the present paper, we will further concentrate on the topic of integrable discrete

hierarchies in 2+1 dimensions, and their connection with discrete Painlevé hierarchies. By
considering a (2+1)-dimensional nonisospectral discrete linear problem, two new (2+1)-
dimensional nonisospectral integrable lattice hierarchies—2+1 nonisospectral relativistic Toda
lattice hierarchy and 2+1 nonisospectral negative relativistic Toda lattice hierarchy—are
constructed. It will be shown that the reductions of the two new 2+1 nonisospectral lattice
hierarchies lead to our previously obtained (2+1)-dimensional nonisospectral Volterra lattice
hierarchy and a new (2+1)-dimensional nonisospectral negative Volterra lattice hierarchy. We
also obtain two new (1+1)-dimensional nonisospectral integrable lattice hierarchies and two
new ordinary difference hierarchies which are direct reductions of the two 2+1 nonisospectral
integrable lattice hierarchies. One of the two difference hierarchies yields our previously
obtained generalized dPI hierarchy and another one yields a generalized alt-dPII hierarchy.
We emphasize here that in the current paper we not only give two new (2+1)-dimensional
integrable discrete nonisospectral flows, but also establish a connection between the 2+1
discrete nonisospectral flows and discrete Painlevé hierarchy. As we know, discrete Painlevé
equations themselves have also physical applications. For example, the computation of a
certain partition function in a model of two-dimensional quantum gravity led to dPI [29, 30].
We thus think our results presented here will give new context in the area of multidimensional
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integrable discrete systems and discrete Painlevé hierarchy which is a subject undergone
remarkable development in recent year.

2. (2+1)-dimensional nonisospectral relativistic Toda hierarchy

In this section, we construct a new (2+1)-dimensional nonisospectral relativistic Toda hierarchy
by considering the following (2+1)-dimensional nonisospectral scattering problem:

Eψn(λ) = Un(un, vn, λ)ψn(λ), (2.1)

dψn(λ)

dt
= ω(λ)

dψn(λ)

dy
+ V (m)

n (un, vn, λ)ψn(λ), (2.2)

where field functions un, vn and wavefunction ψn are functions of arguments n, t, and y (with
n being a discrete variable, and t and y continuous variables), and E is the shift operator, i.e.,
Efn = fn+1, and where

Un(un, vn, λ) =
(

λ + vn λun

−1 0

)
, (2.3)

V (m)
n (λ) =

(
unA

(m)
n (λ) −λunB

(m)
n (λ)

E−1B(m)
n (λ) un−1E

−1A(m)
n (λ) + (λ + vn−1)E

−1B(m)
n (λ)

)
. (2.4)

Here time evolution of the spectral parameter λ = λ(t, y) satisfies a nonisospectral condition

λt = ω(λ)λy + β(λ), (2.5)

where ω(λ) and β(λ) are two functions to be specified. To the best of our knowledge, the
2+1 discrete nonisospectral spectral problem, with derivation for a continuous variable y of
wavefunction ψn appears in the temporal evolution equation, is new. In the continuous case,
such type of 2+1 nonisospectral problems have been discussed. The first example is due to
Calogero [18], and has as a subcase the equation

uxt = uxxxy + 4uxuxy + 2uxxuy, (2.6)

which aries as the compatibility condition of the linear system

ψxx + (ux − λ)ψ = 0, ψt = 4λψy + 2uyψx − uxyψ, (2.7)

where the spectral parameter λ = λ(y, t) satisfies the constraint [31, 32]

λt = 4λλy. (2.8)

Since the appearance of equation (2.6), many new continuous (2+1)-dimensional
nonisospectral integrable hierarchies have been constructed (see e.g. references in [33]). Let
us now discuss the spectral problem (2.1)–(2.2). The compatibility condition of the system
(2.1)–(2.2) with (2.5) is

∂Un

∂t
+ β(λ)

∂Un

∂λ
− ω(λ)

∂Un

∂y
= V

(m)
n+1 Un − UnV

(m)
n . (2.9)

Our aim is to seek a proper matrix V (m)
n such that this nonisospectral discrete zero curvature

equation yields a (2+1)-dimensional integrable lattice hierarchy. A direct calculation gives

vn,t − ω(λ)vn,y + β(λ) = (λ + vn)(E − 1)unA
(m)
n + λ(un+1E − unE

−1)B(m)
n (2.10)
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β(λ)un + λ(un,t − ω(λ)un,y) = λun

[
(un+1E − un−1E

−1)A(m)
n

+ (E − 1)
(
(vn−1 + λ)E−1B(m)

n

)]
. (2.11)

Then we expand A(m)
n , B(m)

n as the following:

A(m)
n (λ) =

m∑
j=1

aj (n, t, y)λm−j , B(m)
n (λ) =

m∑
j=1

bj (n, t, y)λm−j , (2.12)

and suppose ω(λ), β(λ) have the forms

ω(λ) = λm, β(λ) =
m−1∑
j=0

βjλ
m−j , m � 1, (2.13)

with βj (j = 0, 1, . . . , m − 1) being arbitrary constants. Substituting (2.12) and (2.13) to
(2.10) and (2.11), and separating different powers of λ, we obtain the following equations:

un,y + un(1 − E−1)b1 = 0, (E − 1)una1 = (un − un+1E
2)E−1b1 − vn,y + β0,

bj+1 = αj+1(t, y) − (E + 1)unaj − vnbj + (n + 1)βj−1, j = 1, 2, . . . , m − 1

(E − 1)unaj+1 = βj − vn(E − 1)unaj + (un − un+1E
2)E−1bj+1, j = 1, 2, . . . , m − 1.

(2.14)

We can determine aj , bj (j = 1, 2, . . . , m) from above equations. Thus a new (2+1)-
dimensional nonisospectral integrable lattice hierarchy is proposed,(

un

vn

)
tm

= K

(
am

bm

)
−

(
βm−1un

0

)
, m � 1 (2.15)

where K is a skew-symmetric matrix operator given by

K =
(

un(E − E−1)un un(1 − E−1)vn

vn(E − 1)un 0

)
. (2.16)

We solve (2.14) as

a1 = −α0(t, y) + un
−1(E − 1)−1(un+1E

2 − un)(E − 1)−1 un,y

un

−un
−1(E − 1)−1vn,y + β0nun

−1, (2.17)

b1 = α0(t, y) − (E − 1)−1 un+1,y

un+1
,

and (
ak

bk

)
= J

(
ak−1

bk−1

)
+ Gk, k = 2, 3, . . . , m, (2.18)

where

Gk =
(

nβk−1

un
− βk−2

un
(E − 1)−1un+1 − nβk−2 − αk−1

(n + 1)βk−2 + αk−1

)
, (2.19)

J =
(

J11 J12

−(E + 1)un −vn

)
(2.20)

with

J11 = un
−1(E − 1)−1[vn(1 − E) + (un+1E − unE

−1)(E + 1)]un

J12 = un
−1(E − 1)−1(un+1E − unE

−1)vn.



The (2+1)-dimensional nonisospectral relativistic Toda hierarchy 7711

Thus we see that aj , bj can be solved for recursively, and lattice hierarchy (2.15) can be
rewritten as(

un

vn

)
tm

+

(
βm−1un

0

)
= KJm−1

(
a1

b1

)
+ K

( m−2∑
l=0

J lGm−l

)
, m � 1. (2.21)

Further we set another skew-symmetric matrix operator L given by

L =
(

un
−1(E − 1)−1(un+1E

2 − un)(E − 1)−1u−1
n un

−1(1 − E)−1

(E−1 − 1)−1u−1
n 0

)
(2.22)

and

Q = KL =
(

R − un(E − 1)[vn−1(E − 1)−1u−1
n ] −un(1 + E−1)

vn(un+1E
2 − un)(E − 1)−1u−1

n −vn

)
, (2.23)

where

R = un(1 + E−1)(un+1E
2 − un)(E − 1)−1u−1

n (2.24)

is the recursion operator of the Volterra lattice hierarchy. Note that L−1JL = Q, where

L−1 =
(

0 un(E
−1 − 1)

(1 − E)un unE
−1 − un+1E

)
. (2.25)

Finally, we obtain the following (2+1)-dimensional integrable lattice hierarchy:(
un

vn

)
tm

= Qm

(
un,y

vn,y

)
+

m−1∑
l=0

αm−l−1Q
lK1 +

m−2∑
l=−1

βm−l−2Q
l+1

(
un

vn

)
, m � 1, (2.26)

where

K1 =
(

un(un−1 − un+1 + vn − vn−1)

vn(un − un+1)

)
.

This lattice hierarchy is a new (2+1)-dimensional nonisospectral relativistic Toda lattice
hierarchy. The first term of the right-hand side of the equation corresponds to an extension
of the relativistic Toda hierarchy to 2+1 dimensions; the second terms consists of a sum of
standard (isospectral) relativistic Toda lattice flows. The third term consists of additional
1+1-dimensional nonisospectral terms. It is worth remarking here that the structure of the
(2+1)-dimensional nonisospectral relativistic Toda lattice hierarchy is new and interesting. We
now give the first and second flows of lattice hierarchy (2.26). Setting m = 1 and m = 2, we
have, respectively,(

un

vn

)
t1

= Q

(
un,y

vn,y

)
+ α0K1 + β0

(
un

vn

)
(2.27)

(
un

vn

)
t2

= Q2

(
un,y

vn,y

)
+ (α1 + α0Q)K1 + (β1 + β0Q)

(
un

vn

)
. (2.28)

It is interesting to note that, under the reduction vn = 0, hierarchy (2.26) reduces to our
previously obtained (2+1)-dimensional nonisospectral Volterra lattice hierarchy:

un,tm = Rm(un,y) +
m−1∑
l=0

αm−l−1R
lK0 +

m−2∑
l=−1

βm−l−2R
l+1un, (2.29)
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where the operator R is given by equation (2.24) and

K0 = un(un−1 − un+1)

is a standard Volterra flow. We remark here that the following (1+1)-dimensional
nonisospectral Volterra lattice hierarchy obtained in [22]

un,tm = Rm−1(K0 + un), m � 1, (2.30)

is a special case of the new (2+1)-dimensional nonisospectral Volterra lattice hierarchy with
∂y = 0, α0 = β0, αj = βj = 0 (j = 1, 2, . . . , m − 1). Our 2+1 lattice hierarchy (2.26) can
also yield new 1+1 nonisospectral flows. Note that K−1 is given by

K−1 =
(

0 u−1
n (E − 1)−1v−1

n

gn hn

)
, (2.31)

where

gn = v−1
n E(E − 1)−1u−1

n , hn = v−1
n (E + 1)(1 − E)−1v−1

n , (2.32)

and

Q−1 = L−1K−1 =
(

un(E
−1 − 1)gn un(E

−1 − 1)hn

(unE
−1 − un+1E)gn (unE

−1 − un+1E)hn − v−1
n

)
. (2.33)

Thus 2+1 relativistic Toda lattice hierarchy (2.26), under the reduction ∂tm = 0, leads to a new
1+1 nonisospectral lattice hierarchy(

un,y

vn,y

)
= −

m−1∑
l=0

αm−l−1Q
l−mK1 −

m−2∑
l=−1

βm−l−2Q
l−m+1

(
un

vn

)
, (2.34)

with corresponding nonisospectral linear problem

Eψn(λ) = Un(un, vn, λ)ψn(λ), (2.35)

dψn(λ)

dy
= −λ−mV (m)

n (un, vn, λ)ψn(λ). (2.36)

Setting vn = 0, lattice hierarchy (2.34) reduces to the nonisospectral flow:

un,y = −
m−1∑
l=0

αm−l−1R
l−mK0 −

m−2∑
l=−1

βm−l−2R
l−m+1un, (2.37)

where the operator R−1 is defined by

R−1 = un(E − 1)(un+1E
2 − un)

−1(E + 1)−1Eu−1
n . (2.38)

As we presented in the introduction, our purpose is not only constructing new multidimensional
integrable discrete nonisospectral flows, but also exploring the connection between them
and discrete Painlevé hierarchy. Next we will show that (2+1)-dimensional nonisospectral
relativistic Toda hierarchy (2.26) encompasses a generalized dPI hierarchy and an asymmetric
dPI-like difference system. First we note that, under the reduction ∂tm = ∂y = 0, hierarchy
(2.26) reduces to the following new difference hierarchy:

m−1∑
l=0

αm−l−1Q
lK1 +

m−2∑
l=−1

βm−l−2Q
l+1

(
un

vn

)
=

(
0
0

)
, m � 1, (2.39)

which relates to the linear problem

Eψn(λ) = Un(un, vn, λ)ψn(λ), (2.40)
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m−1∑

j=0

βjλ
m−j


 dψn(λ)

dλ
= V (m)

n (un, vn, λ)ψn(λ), (2.41)

where un, vn are only functions of n. Setting vn = 0, the new difference hierarchy yields a
our previously obtained generalized dPI hierarchy

m−1∑
l=0

αm−l−1R
lK0 +

m−2∑
l=−1

βm−l−2R
l+1un = 0. (2.42)

For vn �= 0, we consider the local case where βm−l−2 = 0, l = 0, 1, . . . , m − 2,
m−1∑
l=0

αm−l−1Q
lK1 + βm−1

(
un

vn

)
=

(
0
0

)
,m � 1. (2.43)

This equation can also be written as

K

(
Fm,n

Gm,n

)
=

(
0
0

)
,

(
Fm,n

Gm,n

)
=

m−1∑
j=0

αm−j−1Lj+1,n + βm−1

(
n
un

−n
vn

)
, (2.44)

where K is the Hamiltonian operator (2.16) of the relativistic Toda lattice hierarchy, and Lj+1,n

satisfies the following equation:

QjK1 = Kj+1 = KLj+1,n, j � 0. (2.45)

Note that Q = KL, we have the recursion relation

KLj,n = L−1Lj+1,n, j � 1, (2.46)

where L−1 is another Hamiltonian operator (2.25) of the relativistic Toda lattice hierarchy.
We solve the recursion relation as

L1,n =
(−1

1

)
, L2,n =

(
vn−1 + vn − un−1 − un − un+1

un + un+1 − vn

)
, (2.47)

and

L3,n =
(

aun−1 + 2un(vn−1 + vn) + bun+1 − (
v2

n−1 + v2
n + vn−1vn

) − (
u2

n−1 + u2
n + u2

n+1

)
un(un+1 + un + un−1 − 2vn − vn−1) + un+1(un+2 + un+1 + un − 2vn − vn+1) + v2

n

)
,

(2.48)

where

a = vn−2 + 2vn−1 + vn − un−2 − 2un, b = vn−1 + 2vn + vn+1 − un−1 − 2un − un+2.

Note that

(E − 1)

(
Im,n

Jm,n

)
=

(
0 v−1

n

u−1
n 0

)
K

(
Fm,n

Gm,n

)
=

(
0
0

)
, (2.49)

where (
Im,n

Jm,n

)
=

(
unFm,n

(1 + E−1)(unFm,n) + E−1(vnGm,n),

)
, (2.50)

we thus see that our difference hierarchy (2.43), or equivalently (2.44) can always be summed
to give

unFm,n + cm = 0, (2.51)

(1 + E−1)(unFm,n) + E−1(vnGm,n) + dm = 0, (2.52)
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where cm and dm are two arbitrary constants, or equivalently

unFm,n + cm = 0, (2.53)

E−1(vnGm,n) + dm − 2cm = 0. (2.54)

Let us give an example of the case m = 2. We have(
F2,n

G2,n

)
= α0L2,n + α1L1,n + β1

(
n
un

−n
vn

)
, (2.55)

and thus obtain the second-order system

un+1 + un = β1n + 2c2 − d2

α0vn

+ vn − α1

α0
(2.56)

vn + vn−1 = −(β1n + c2)

α0un

+ un+1 + un + un−1 +
α1

α0
. (2.57)

This last system is an asymmetric dPI-like difference equation.

3. (2+1)-dimensional nonisospectral negative relativistic Toda hierarchy

As we know, negative relativistic Toda lattice hierarchy can be constructed along with the
same linear spectral problem as relativistic Toda lattice hierarchy. This motivates us to
construct a (2+1)-dimensional nonisospectral negative relativistic Toda hierarchy along with
the nonisospectral scattering problem (2.1)–(2.2). We suppose that time evolution of spectral
parameter λ(t, y) satisfies the following nonisospectral condition:

λt = λ−mλy +
m∑

j=1

γjλ
j−m, m � 1, (3.1)

and we set, in matrix V m
n (λ), that

A(m)
n (λ−) =

m∑
j=1

ām−j (n, t, y)λ−j , B(m)
n (λ−) =

m∑
j=1

b̄m−j (n, t, y)λ−j . (3.2)

From the nonisospectral discrete zero curvature equation, we obtain the following equations:

vn(E − 1)(unā0) + vn,y = 0, (E − E−1)unā0 + (E − 1)vn−1E
−1b̄0 +

un,y

un

− γ1 = 0,

vn(E − 1)(unāj+1) + (E − 1)(unāj ) + (un+1E − unE
−1)b̄j = γj+1, j = 0, 1, . . . , m − 2

vnb̄j+1 = nγj+2 + µj − (1 + E)unāj+1 − b̄j , j = 0, 1, . . . , m − 2. (3.3)

Here āj and b̄j (j = 0, 1, . . . , m − 1) are to be determined. This then yields the following
(2+1)-dimensional nonisospectral lattice hierarchy:(

un

vn

)
tm

= K̄

(
ām−1

b̄m−1

)
−

(
0
γm

)
, m � 1, (3.4)

where K̄ is a skew-symmetric matrix operator given by

K̄ =
(

0 un(1 − E−1)

(E − 1)un un+1E − unE
−1

)
. (3.5)
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We see that āj and b̄j can be solved for recursively as

ā0(n, t, y) = γ

un

− 1

un

(E − 1)−1 vn,y

vn

,

b̄0(n, t, y) = α0 + nγ1

vn

+
1

vn

(E − 1)−1

[
vn,y

vn

+
vn+1,y

vn+1
− un+1,y

un+1

]
,

(3.6)

and (
āk−1

b̄k−1

)
= J̄

(
āk−2

b̄k−2

)
+ Ḡk−2, k � 2, (3.7)

where

J̄ =
( −1

un
(E − 1)−1

(
1
vn

(E − 1)
)
un

−1
un

(E − 1)−1 1
vn

(un+1E − unE
−1)

1
vn

(E + 1)(E − 1)−1
(

1
vn

(E − 1)
)
un

−1
vn

[
1 − (E + 1)(E − 1)−1 1

vn
(un+1E −unE

−1)
]
)

,

(3.8)

and

Ḡk−2 =
( γk−1

un
(E − 1)−1v−1

n

1
vn

[
nγk + µk−2 − γk−1(E + 1)(E − 1)−1v−1

n

]
)

. (3.9)

Thus (2+1)-dimensional lattice hierarchy (3.4) can be rewritten in the form(
un

vn

)
tm

= K̄J̄ m−1

(
ā0

b̄0

)
−

(
0
γm

)
+ K̄

(
m−2∑
l=0

J̄ lḠm−l−2

)
, m � 1. (3.10)

Further, setting another skew-symmetric matrix operator L̄ given by

L̄ =
(

0 u−1
n (1 − E)−1v−1

n

v−1
n (E−1 − 1)−1u−1

n v−1
n (E + 1)(E − 1)−1v−1

n

)
, (3.11)

and

Q̄ = K̄L̄ =
(

un(E
−1 − 1)gn un(1 − E−1)hn

(unE
−1 − un+1E)gn (un+1E − unE

−1)hn − v−1
n

)
(3.12)

and noting that L̄−1J̄ L̄ = Q̄, where

L̄−1 =
(

un(E + 1)(E−1 − 1)un un(E
−1 − 1)vn

vn(1 − E)un 0

)
, (3.13)

we finally obtain the following (2+1)-dimensional lattice hierarchy:(
un

vn

)
tm

= Q̄m

(
un,y

vn,y

)
+

m−1∑
l=0

µm−l−2Q̄
l

(
un(1 − E−1)v−1

n

(un+1E − unE
−1)v−1

n

)

+
m−1∑
l=0

γm−lQ̄
l

(
un(1 − E−1)(nv−1

n )

(un+1E − unE
−1)(nv−1

n )

)
−

(
0
γm

)

+
m−2∑
l=0

γm−l−1Q̄
l

(
un(E

−1 − 1)
[
v−1

n (E + 1)(E − 1)−1v−1
n

]
v−1

n + (unE
−1 − un+1E)

[
v−1

n (E + 1)(E − 1)−1v−1
n

]
)

, (3.14)

where µ−1 = α0. We find that the hierarchy is a (2+1)-dimensional nonisospectral extension
of the negative relativistic Toda lattice hierarchy. The first term of the right-hand side of
equation (3.14) corresponds to an extension of the negative relativistic Toda hierarchy to
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2+1 dimensions; the second terms consists of the standard isospectral negative relativistic
Toda lattice flows. The other terms consist of additional (1+1)-dimensional nonisospectral.
Let us give the first flow of our hierarchy(

un

vn

)
t1

= Q̄

(
un,y

vn,y

)
+ α0

(
un(1 − E−1)v−1

n

(un+1E − unE
−1)v−1

n

)
+ γ1

(
un(1 − E−1)(nv−1

n )

(un+1E − unE
−1)(nv−1

n ) − 1

)
.

(3.15)

Noting Q̄−1 = Q, we see that lattice hierarchy (3.14), under the reduction ∂tm = 0, yields the
following new (1+1)-dimensional nonisospectral lattice hierarchy:(

un,y

vn,y

)
= −

m−1∑
l=0

µm−l−2Q
m−l

(
un(1 − E−1)v−1

n

(un+1E − unE
−1)v−1

n

)

−
m−1∑
l=0

γm−lQ
m−l

(
un(1 − E−1)(nv−1

n )

(un+1E − unE
−1)(nv−1

n )

)
+ Qm

(
0
γm

)

−
m−2∑
l=0

γm−l−1Q
m−l

(
un(E

−1 − 1)
[
v−1

n (E + 1)(E − 1)−1v−1
n

]
v−1

n + (unE
−1 − un+1E)

[
v−1

n (E + 1)(E − 1)−1v−1
n

]
)

,

(3.16)

which relates to the nonisospectral linear problem

Eψn(λ) = Un(un, vn, λ)ψn(λ), (3.17)

dψn(λ)

dy
= −λmV (m)

n (un, vn, λ)ψn(λ). (3.18)

Let us consider the special case of vn = 0. Under this case, equation (3.3) reduces to

(E − E−1)unā0 +
un,y

un

− γ1 = 0,

(E − 1)(unāj ) + (un+1E − unE
−1)b̄j = γj+1, j = 0, 1, . . . , m − 2

(1 + E)unāj+1 + b̄j = nγj+2 + µj j = 0, 1, . . . , m − 2,

(3.19)

and also the following equation is satisfied:

(E − 1)(unām−1) + (un+1E − unE
−1)b̄m−1 = γm. (3.20)

Hierarchy (3.4) thus reduces to 2+1 lattice hierarchy

(un)tm = un(1 − E−1)b̄m−1. (3.21)

We find that the 2+1 lattice hierarchy is a (2+1)-dimensional nonisospectral negative Volterra
hierarchy. Let us give explanation for the fact. We suppose that the field function un is
expressed by the tau-function

un = τn+1τn−2

τnτn−1
, (3.22)

and then equation hierarchy (3.21) can be rewritten as(
ln

τn+1

τn−1

)
tm

= b̄m−1, m � 1. (3.23)
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We solve equation (3.19) as

b̄0 = τ 2
n

τn+1τn−1

[
δ0 + (−1)nµ0 +

γ1

2
(E2 − 1)−1 τ 2

n+1

τn+2τn

− (E2 − 1)−1

[
τ 2
n+1

τn+2τn

(
(−1)nζ0 − (E + 1)−1 un+1,y

un+1

) ]]

b̄m−1 = τ 2
n

τn+1τn−1

[
δm−1 + (−1)nµm−1 +

γm

2
(E2 − 1)−1 τ 2

n+1

τn+2τn

+ (E2 − 1)−1

(
τ 2
n+1

τn+2τn

HEb̄m−2

) ]
, m � 2, (3.24)

where the operator H is defined by H = (E + 1)−1(E − 1). Taking ζ0 = µ0 = γ1 = 0, δ0 =
1,m = 1 and ∂y = 0, we get the first member of hierarchy (3.23)

d

dt
ln

τn+1

τn−1
= τ 2

n

τn+1τn−1
, (3.25)

which is the simplest flow of the negative Volterra hierarchy [34]. The second flow with
ζ0 = µ0 = µ1 = γ1 = γ2 = δ1 = 0, δ0 = 1, and ∂y = 0 of hierarchy (3.23) is the second one
of the negative Volterra hierarchy

d

dt
ln

τn+1

τn−1
= τ 2

n

τn+1τn−1
(E2 − 1)−1

[
τ 2
n+1

τn+2τn

H
τ 2
n+1

τn+2τn

]
. (3.26)

Therefore, hierarchy (3.21) is really a nonisospectral 2+1 extension of the negative Volterra
hierarchy. Let us show how the new (2+1)-dimensional nonisospectral negative relativistic
Toda hierarchy is connected to the discrete Painlevé hierarchy. It is obvious that 2+1 negative
relativistic Toda lattice hierarchy (3.14), under the reduction ∂tm = ∂y = 0, yields the following
new difference hierarchy:(

0
γm

)
=

m−1∑
l=0

µm−l−2Q̄
l

(
un(1 − E−1)v−1

n

(un+1E − unE
−1)v−1

n

)

+
m−1∑
l=0

γm−lQ̄
l

(
un(1 − E−1)(nv−1

n )

(un+1E − unE
−1)(nv−1

n )

)

+
m−2∑
l=0

γm−l−1Q̄
l

(
un(E

−1 − 1)
[
v−1

n (E + 1)(E − 1)−1v−1
n

]
v−1

n + (unE
−1 − un+1E)

[
v−1

n (E + 1)(E − 1)−1v−1
n

]
)

, (3.27)

with the corresponding linear problem

Eψn(λ) = Un(un, vn, λ)ψn(λ), (3.28)
 m∑

j=1

γjλ
j−m


 dψn(λ)

dλ
= V (m)

n (un, vn, λ)ψn(λ), (3.29)

where un, vn are the only functions of n. We give the member of difference hierarchy (3.27)
with m = 2 and γ1 = 0:(

0
γ2

)
= α0Q̄

(
un(1 − E−1)v−1

n

(un+1E − unE
−1)v−1

n

)
−

(
un(1 − E−1)

(
nγ2+µ0

vn

)
(un+1E − unE

−1)
(

nγ2+µ0

vn

)
)

. (3.30)
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Solving the difference system, we obtain

α0

(
un

vn−1vn

+
un+1

vnvn+1

)
= kvn +

α0

vn

− γ2n − µ0 (3.31)

un = (γ2n + α1)vn−1vn

kvn−1vn − α0
. (3.32)

Taking k = −α0 and eliminating un from this system yields

zn−1

vn−1vn + 1
+

zn

vnvn+1 + 1
= α0

(
− vn +

1

vn

)
+ zn + µ, (3.33)

where zn−1 = −γ2n − α1. This last equation is the alt-dPII equation. We thus see that (2+1)-
dimensional nonisospectral negative relativistic Toda hierarchy encompasses a generalized
alt-dPII hierarchy.

4. Conclusions and discussions

We have given two new (2+1)-dimensional nonisospectral lattice hierarchies—2+1
nonisospectral relativistic Toda lattice hierarchy and 2+1 nonisospectral negative relativistic
Toda lattice hierarchy. We have shown that a generalized dPI hierarchy and a generalized
alt-dPII hierarchy can be embedded two new ordinary difference hierarchies which are
reductions of the two 2+1 nonisospectral lattice flows. We have also presented that
they yield new integrable hierarchies, including a 2+1 nonisospectral Volterra lattice
hierarchy, a 2+1 nonisospectral negative Volterra lattice hierarchy and new (1+1)-dimensional
nonisospectral hierarchies. The method of constructing the two new (2+1)-dimensional
integrable nonisospectral lattice hierarchies is the nonisospectral scattering method. By using
it, we have succeeded in constructing several new (2+1)-dimensional integrable nonisospectral
lattice hierarchies. We believe that many more 2+1 integrable nonisospectral lattice hierarchies
can be given in this way. It would be interesting to exploit other integrability for the two new
2+1 nonisospectral lattice hierarchies, such as infinitely many conservation laws and soliton
solutions. We will leave the topic to the future.
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